Evaluate outputs from models implemented using a (1) rjMCMC and (2) Gibbs Variable Selection approach. Returns comparative plots of posterior model rankings and posterior parameter estimates.

compare_models(
  rj.dat = NULL,
  gvs.fixed = NULL,
  gvs.random = NULL,
  by.model = FALSE,
  kernel.adj = 2,
  viridis.col = FALSE,
  density = TRUE,
  prob = TRUE
)

Arguments

rj.dat

Input rjMCMC object, as returned by trace_rjMCMC.

gvs.fixed

Input Gibbs object, as returned by gibbs using a fixed effect implementation of the dose-response model.

gvs.random

Input Gibbs object, as returned by gibbs using a random effect implementation of the dose-response model.

by.model

Logical. If TRUE, the functions subsets posterior estimates by candidate model.

kernel.adj

Bandwidth adjustment. The bandwidth used to create density plots is given by kernel.adj*bw.

viridis.col

Logical. Whether to use a viridis colour scheme.

density

Logical. If TRUE, compares density plots for each model parameter.

prob

Logical. If TRUE, compares posterior rankings for candidate models.

See also

simulate_data example_brs summary.rjdata

Author

Phil J. Bouchet

Examples

if (FALSE) { library(espresso) # Simulate data for two species mydat <- simulate_data(n.species = 2, n.whales = 16, max.trials = 3, covariates = list(exposed = c(0, 5), range = 0.5), mu = c(101, 158), phi = 20, sigma = 20, Rc = c(210, 211), seed = 58697) summary(mydat) # Model selection by GVS gvs <- gibbs(dat = mydat, random.effects = FALSE, include.covariates = FALSE, mcmc.n = 1000, burnin = 500) # Run the reversible jump MCMC rj <- run_rjMCMC(dat = mydat.config, n.chains = 2, n.burn = 100, n.iter = 100, do.update = FALSE) # Burn and thin rj.trace <- trace_rjMCMC(rj.dat = rj) # Compare outputs compare_models(rj.dat = rj.trace, gvs.fixed = gvs) }