Fits the Bayesian hierarchical dose-response model of Miller et al. (2014) to multiple species using rjags (Plummer 2019) , and estimates posterior model probabilities using a Gibbs Variable Selection (GVS) approach (O'Hara and Sillanpää 2009) .

gibbs(
  dat,
  random.effects = FALSE,
  pseudo.n = 10000,
  mcmc.n = 1000,
  burnin = 1000,
  n.chains = 1,
  thin = 1,
  epsilon.upper = 30
)

Arguments

dat

Input data. Must be an object of class rjtrace or brsdata.

random.effects

Logical. When TRUE, uses a random effect model formulation.

pseudo.n

Number of iterations for the pseudo-priors.

mcmc.n

Number of posterior samples.

burnin

Number of iterations to discard as burn-in.

n.chains

Number of MCMC chains.

thin

Thinning interval.

epsilon.upper

Upper bound on the ε parameter used in the random effect model formulation.

Value

A list object of class gvs.

Details

Adapted from original code developed by Dina Sadykova as part of the Mocha project. The function can accommodate species/species groups either as a fixed or a random effect.

References

Miller PJO, Antunes RN, Wensveen PJ, Samarra FIP, Alves AC, Tyack PL, Kvadsheim PH, Kleivane L, Lam FA, Ainslie MA, Thomas L (2014). “Dose-response relationships for the onset of avoidance of sonar by free-ranging killer whales.” J. Acoust. Soc. Am., 135(2), 975. doi: 10.1121/1.4861346 .

O'Hara RB, Sillanpää MJ (2009). “A review of Bayesian variable selection methods: What, how and which.” Bayesian Analysis, 4(1), 85--117.

Plummer M (2019). rjags: Bayesian Graphical Models using MCMC. R package version 4-10, https://CRAN.R-project.org/package=rjags.

See also

Author

Phil J. Bouchet

Examples

if (FALSE) { library(espresso) # Simulate data for two species mydat <- simulate_data(n.species = 2, n.whales = 16, max.trials = 3, covariates = list(exposed = c(0, 5), range = 0.5), mu = c(101, 158), phi = 20, sigma = 20, Rc = c(210, 211), seed = 58697) summary(mydat) # Model selection by GVS gvs <- gibbs(dat = mydat, random.effects = FALSE, mcmc.n = 1000, burnin = 500) }