run_rjMCMC.RdRun the rjMCMC algorithm on dose-response data.
run_rjMCMC(dat, n.chains = 3, n.burn = 1000, n.iter = 1000, do.update = FALSE)
| dat | A configured rjMCMC object of class |
|---|---|
| n.chains | Number of MCMC chains. |
| n.burn | Number of MCMC iterations to use as burn-in. |
| n.iter | Number of posterior samples. |
| do.update | Logical. If |
A list object of class rjmcmc.
A progress bar is used to monitor code execution on Mac and Linux operating systems. This feature does not currently work on Windows.
configure_RJMCMC plot.rjtrace update_rjMCMC
Phil J. Bouchet
if (FALSE) { library(espresso) # Import the example data, excluding species with sample sizes < 5 # and considering the sonar covariate mydat <- read_data(file = NULL, min.N = 5, covariates = "sonar") summary(mydat) # Configure the sampler mydat.config <- configure_rjMCMC(dat = mydat, model.select = TRUE, covariate.select = FALSE, function.select = FALSE, n.rep = 100) summary(mydat.config) # Run the reversible jump MCMC rj <- run_rjMCMC(dat = mydat.config, n.chains = 2, n.burn = 100, n.iter = 100, do.update = FALSE) }