Run the rjMCMC algorithm on dose-response data.

run_rjMCMC(dat, n.chains = 3, n.burn = 1000, n.iter = 1000, do.update = FALSE)

Arguments

dat

A configured rjMCMC object of class rjconfig, as returned by configure_rjMCMC.

n.chains

Number of MCMC chains.

n.burn

Number of MCMC iterations to use as burn-in.

n.iter

Number of posterior samples.

do.update

Logical. If TRUE, updates an existing rjMCMC object.

Value

A list object of class rjmcmc.

Note

A progress bar is used to monitor code execution on Mac and Linux operating systems. This feature does not currently work on Windows.

See also

configure_RJMCMC plot.rjtrace update_rjMCMC

Author

Phil J. Bouchet

Examples

if (FALSE) { library(espresso) # Import the example data, excluding species with sample sizes < 5 # and considering the sonar covariate mydat <- read_data(file = NULL, min.N = 5, covariates = "sonar") summary(mydat) # Configure the sampler mydat.config <- configure_rjMCMC(dat = mydat, model.select = TRUE, covariate.select = FALSE, function.select = FALSE, n.rep = 100) summary(mydat.config) # Run the reversible jump MCMC rj <- run_rjMCMC(dat = mydat.config, n.chains = 2, n.burn = 100, n.iter = 100, do.update = FALSE) }