Update the Markov chain(s) associated with an existing rjMCMC sampler.

update_rjMCMC(rjdat, n.iter = 1000)

Arguments

rjdat

Input rjMCMC sampler. Must be an object of class rjmcmc, as returned by run_rjMCMC.

n.iter

Number of posterior samples.

See also

Author

Phil J. Bouchet

Examples

if (FALSE) { library(espresso) # Import the example data, excluding species with sample sizes < 5 # and considering the sonar covariate mydat <- read_data(file = NULL, min.N = 5, covariates = "sonar") summary(mydat) # Configure the sampler mydat.config <- configure_rjMCMC(dat = mydat, model.select = TRUE, covariate.select = FALSE, proposal.mh = list(t.ij = 10, mu.i = 10, mu = 7, phi = 10, sigma = 10), proposal.rj = list(dd = 20, cov = 7), prior.covariates = c(0, 30), n.rep = 100) summary(mydat.config) # Run the reversible jump MCMC rj <- run_rjMCMC(dat = mydat.config, n.chains = 2, n.burn = 100, n.iter = 100, do.update = FALSE) rj.update <- update_rjMCMC(rjdat = rj, n.iter = 500) }