summary.rjtrace.Rd
Summary method for objects of class rjtrace
, as returned by trace_rjMCMC
. Produces a text-based summary of: (1) effective sample sizes, (2) acceptance rates, (3) model convergence, (4) posterior model probabilities, and (5) posterior inclusion probabilities (PIPs) for contextual covariates (where appropriate).
# S3 method for rjtrace summary( rj.obj, eff.n = TRUE, accept.rate = TRUE, convergence = TRUE, gelman.rubin = 1.1, model.ranks = TRUE, n.top = 10, southall.2019 = TRUE, covariate.prob = TRUE, ff.prob = TRUE, x.off = 0.1, rmd = FALSE, do.plot = TRUE )
rj.obj | Input rjMCMC object, as returned by |
---|---|
eff.n | Logical. If |
accept.rate | Logical. If |
convergence | Logical. If |
gelman.rubin | Threshold for determining convergence based on the Gelman-Rubin statistic. Defaults to |
model.ranks | Logical. If |
n.top | Number of top-ranking models to display when |
southall.2019 | Logical. Whether to produce a tile plot showing species groupings, as identified in Southall et al. (2019)
. This is only relevant if real-world BRS data are being analysed (and therefore, |
covariate.prob | Logical. If |
ff.prob | Logical. If |
x.off | Offset for probability values in tile plots. |
rmd | Logical. This is used to create a different layout of plots when exporting results using |
do.plot | Logical. If |
A detailed summary, printed to the R console.
Southall BL, Finneran JJ, Reichmuth C, Nachtigall PE, Ketten DR, Bowles AE, Ellison WT, Nowacek DP, Tyack PL (2019). “Marine mammal noise exposure criteria: Updated scientific recommendations for residual hearing effects.” Aquatic Mammals, 45(2). doi: 10.1578/AM.45.2.2019.125 .
simulate_data
example_brs
summary.rjdata
Phil J. Bouchet
if (FALSE) { library(espresso) # Import the example data, excluding species with sample sizes < 5 # and considering the sonar covariate mydat <- read_data(file = NULL, min.N = 5, covariates = "sonar") summary(mydat) # Configure the sampler mydat.config <- configure_rjMCMC(dat = mydat, model.select = TRUE, covariate.select = FALSE, function.select = FALSE, n.rep = 100) summary(mydat.config) # Run the reversible jump MCMC rj <- run_rjMCMC(dat = mydat.config, n.chains = 2, n.burn = 100, n.iter = 100, do.update = FALSE) summary(rj) }