compile_rjMCMC.Rd
Compute dose-response functions from a fitted rjMCMC model.
compile_rjMCMC( rj.object, phase = 1, by.model = FALSE, model.rank = 1, covariate = NULL, covariate.values = NULL, species = NULL, credible.intervals = c(95, 50, 5), npts = 20 )
rj.object | Input rjMCMC object of class |
---|---|
phase | Dose-response functional form: monophasic (1) or biphasic (2). |
by.model | Logical. If |
model.rank | Rank of the model to generate curves for when |
covariate | Covariate name. This argument can be used to generate dose-response curves for specific contextual covariates, conditioned on the species (group) given by |
covariate.values | A vector of values for which dose-response curves are required. Only valid for continuous covariates. |
species | Species name. |
credible.intervals | Credible intervals. Must be a integer vector in |
npts | Number of quadrature points to use to integrate out the random effects when computing dose-response curves for biphasic models. Defaults to 20. |
A list object of class dose_response
.
Phil J. Bouchet
if (FALSE) { library(espresso) # Import the example data, excluding species with sample sizes < 5 # and considering the sonar covariate mydat <- read_data(file = NULL, min.N = 5, covariates = "sonar") summary(mydat) # Configure the sampler mydat.config <- configure_rjMCMC(dat = mydat, model.select = TRUE, covariate.select = FALSE, function.select = FALSE, n.rep = 100) summary(mydat.config) # Run the reversible jump MCMC rj <- run_rjMCMC(dat = mydat.config, n.chains = 2, n.burn = 100, n.iter = 100, do.update = FALSE) # Burn and thin rj.trace <- trace_rjMCMC(rj.dat = rj) # Get dose-response functions doseR <- compile_rjMCMC(rj.trace) }